世界科技研究与发展 ›› 2025, Vol. 47 ›› Issue (1): 82-102.doi: 10.16507/j.issn.1006-6055.2025.01.001 cstr: 32308.14.1006-6055.2025.01.001

• 盐碱地综合利用 • 上一篇    下一篇

土壤盐渍化遥感监测研究进展

张越1,2,3 叶回春1,2,4 刘荣豪3 汤明尧5 聂超甲1,2 赵筱舒3 薛娇1,2   

  1. 1.可持续发展国际大数据研究中心;2.中国科学院空天信息创新研究院数字地球重点实验室;3.太原理工大学水利科学与工程学院;4.喀什中科空天信息研究院地球大数据与可持续发展实验室;5.新疆维吾尔自治区土壤肥料工作站
  • 出版日期:2025-03-06 发布日期:2025-03-06
  • 基金资助:
    新疆维吾尔自治区自然科学基金“时空遥感特征耦合的新疆盐碱地监测方法与时空演化特征研究”(2024D01A21),新疆维吾尔自治区重点研发项目(厅厅联动)“新疆盐碱耕地土壤障碍因子削减技术及新型改良剂研制”(2023B02002),中国科学院青年创新促进会会员资助项目(2021119)

Research Progress in Remote Sensing Monitoring of Soil Salinization

ZHANG Yue1,2,3 YE Huichun1,2,4 LIU Ronghao3 TANG Mingyao5 NIE Chaojia1,2 ZHAO Xiaoshu3 XUE Jiao1,2   

  1. 1.International Research Center of Big Data for Sustainable Development Goals; 2.Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences; 3.College of Water Resources Science and Engineering, Taiyuan University of Technology; 4.Lab of Big Earth Data and Sustainable Development Goal,Kashi Aerospace Information Research Institute; 5.Xinjiang Soil and Fertilizer Station
  • Online:2025-03-06 Published:2025-03-06

摘要: 土壤盐渍化是全球普遍存在的资源和生态问题,严重制约着农业发展和土地资源的可持续利用。近年来,遥感技术凭借大范围的覆盖能力、较高的时空分辨率等优势,已成为盐碱地遥感监测的重要手段。本文综述了国内外相关研究,总结了多光谱、高光谱、热红外及多源数据融合技术在土壤盐渍化监测中的应用现状。重点梳理了当前常用的盐分指数、植被指数、敏感波段及遥感反演模型,分析了不同方法在盐渍土监测中的适用性及局限性。此外,本文还探讨了土壤盐渍化遥感监测领域存在的主要问题,如模型泛化能力不足和监测精度受多因素影响等,并展望了未来发展方向,包括融合多源数据、加强跨学科交流与合作等。研究结果可为提高土壤盐渍化遥感监测精度、优化监测方法及促进盐渍土治理提供科学支持。

关键词: 土壤盐渍化, 遥感监测, 光谱特征, 反演模型, 多源数据

Abstract: Soil salinization is a globally prevalent resource and ecological issue that severely restricts agricultural development and the sustainable use of land resources.In recent years,remote sensing technology,with its advantages of extensive coverage and high spatiotemporal resolution,has become an important tool for monitoring saline-alkali land.This paper reviews relevant studies conducted both domestically and internationally,summarizing the applications of multispectral,hyperspectral,thermal infrared,and multi-source data fusion techniques in soil salinization monitoring.It focuses on commonly used salinity indices,vegetation indices,sensitive bands,and remote sensing inversion models,analyzing the applicability and limitations of different methods in salinized soil monitoring.Furthermore,the paper discusses key challenges in the field,such as limited model generalization and the impact of multiple factors on monitoring accuracy.Future research directions are also explored,including multi-source data integration and enhanced interdisciplinary collaboration.The findings of this study provide scientific support for improving the accuracy of soil salinization remote sensing monitoring,optimizing monitoring methods,and promoting the management of saline-alkali soils.

Key words: Soil Salinization, Remote Sensing Monitoring, Spectral Characteristics, Inversion Models, Multi-source Data