世界科技研究与发展 ›› 2021, Vol. 43 ›› Issue (3): 274-285.doi: 10.16507/j.issn.1006-6055.2020.12.025

• 科技前沿与进展 • 上一篇    下一篇

应用于无人驾驶车辆的点云聚类算法研究进展

王子洋  李琼琼  张子蕴  王康  杨家富   

  1. 南京林业大学机械电子工程学院,南京210037
  • 出版日期:2021-06-25 发布日期:2021-06-29
  • 基金资助:
    南京市科技创新项目“氢能源汽车电池管理系统(含软件)”(2015CG047)

Research Progress of Unmanned Vehicle Point Cloud Clustering Algorithm

WANG Ziyang   LI Qiongqiong   ZHANG Ziyun   WANG Kang   YANG Jiafu   

  1. School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Online:2021-06-25 Published:2021-06-29

摘要: 点云聚类是激光雷达实现无人驾驶汽车环境感知中的关键步骤,其将激光雷达构建的点云地图中离散的点聚类成各个整体,是实现检测的重要前提,也为后续的辨识提供了必要基础。本文将应用于无人驾驶车辆点云聚类中的聚类算法分为六类,分别是现有的基于划分的聚类算法、基于层次的聚类算法、基于密度的聚类算法、基于网格的聚类算法、基于距离的聚类算法以及混合聚类算法。在系统分析各种聚类算法基础上,对点云聚类过程中存在的问题、解决方案和性能进行比较分析。考虑到无人驾驶车辆点云聚类的准确性和实时性要求,边缘算法、混合聚类算法和新型聚类算法的结合使用将是无人驾驶车辆点云聚类的研究热点,也是今后无人驾驶车辆点云聚类的研究重点。

关键词: 点云聚类, 激光雷达, 无人驾驶, 聚类算法

Abstract: Point cloud clustering is a key step in the realization of environment perception of unmanned vehicle by lidar. It clusters the discrete points in the point cloud map constructed by lidar into individual whole, which provides the necessary basis for subsequent classification and tracking. In this paper, the clustering algorithms applied to unmanned vehicle point cloud clustering are divided into six categories, which are the existing clustering algorithm based on partition, clustering algorithm based on hierarchy, clustering algorithm based on density, clustering algorithm based on grid, clustering algorithm based on distance and hybrid clustering algorithm. Based on the systematic analysis of various clustering algorithms, the problems, solutions and performance in the process of point cloud clustering are compared and analyzed. Considering the accuracy and real-time requirements of unmanned vehicle point cloud clustering, the combination of edge algorithm, hybrid clustering algorithm and new clustering algorithm will be the research hotspot of unmanned vehicle point cloud clustering, and also the research focus of unmanned vehicle point cloud clustering in the future.

Key words: Point Cloud Clustering, Lidar, Driverless, Clustering Algorithm