世界科技研究与发展 ›› 2023, Vol. 45 ›› Issue (6): 761-774.doi: 10.16507/j.issn.1006-6055.2023.01.003

• 科技评价与评估 • 上一篇    

我国智慧能源产业政策量化评价——基于文本挖掘和PMC指数优化模型

汤匀1,2 王宏杨1,2 胡何欣3 柯旺松4 陈伟1,2,5   

  1. 1. 中国科学院武汉文献情报中心,武汉 430071;2. 科技大数据湖北省重点实验室,武汉 430071;3. 武汉大学信息管理学院,武汉 430072;4. 国网湖北省电力有限公司信息通信公司,武汉 430077;5. 中国科学院大学经济与管理学院,北京 100190
  • 出版日期:2023-12-25 发布日期:2023-12-29
  • 基金资助:
    中国科学院战略性先导科技专项“煤炭清洁燃烧与低碳利用”战略研究与专项总体课题(XDA29010500),中国科学院战略研究与决策支持系统建设专项课题“双碳”行动计划战略研究(GHJ-ZLZX-2023-06),中国科学院文献情报能力建设专项“基于智能分析模型的能源领域重大科技问题研究”(E2KZ261001),中国科学院武汉文献情报中心2020 年度自主部署项目- 前瞻性课题“政策模型一致性指数(PMCI)的改进方法研究”(E0ZG281),中国科学院特别研究助理项目(E1KZ141001),武汉市知识创新专项“政策评价驱动的武汉市氢能产业发展路径研究”(E2KZ181001)

Quantitative Evaluation of Smart Energy Industrial Policies in China Based on Text Mining and PMC Index Optimization Mode

TANG Yun1,2   WANG Hongyang1,2   HU Hexin3   KE Wangsong4    CHEN Wei1,2,5   

  1. 1. Wuhan Literature and Information Center, Chinese Academy of Sciences, Wuhan 430071, China; 2. Hubei Key Laboratory of Big Data in Science and Technology, Wuhan 430071, China; 3. Economics and management School of Wuhan University, Wuhan 430072, China; 4. State Grid Hubei Information and Communication Company, Wuhan 430077, China; 5. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
  • Online:2023-12-25 Published:2023-12-29

摘要:

客观科学的评价方法能保证政策评价结果合理和准确,直接有效地促进政策制定、执行和反馈调整。与以往的复合型评价法不同,PMC 指数模型很大程度避免了主观性并提高了精确度,是当前国际上比较客观且仅用于分析政策文本的量化评价法。但目前PMC模型指标体系设定较为固定,且指标数量较少,一般不超过10个一级指标,且不能对政策本文内容进行全面的量化评价研究。因此,本文通过ROST CM6和VOSviewer工具对智慧能源政策样本集进行深度文本挖掘,根据挖掘出的高频词、网络性和小团体结果,将PMC模型进行优化,一级变量扩展到17个,二级变量扩展到115个,原创性提出智慧能源领域关键变量体系,实现政策文本颗粒度更小、更微观的量化评价。结果显示,17项政策中有8项为良好政策,其余9项均为可接受政策,其中2021年国家能源局发布的《2021年能源工作指导意见》内容最为全面和科学;17个一级变量以及指标中,样本在政策性质、政策评价、研究基础、政策公开、政策重点内容方面存在优势,在政策范围、激励保障、政策作用对象、政策功能、能源服务、能源终端应用、能源种类方面还存在一定欠缺,政策时效、政策发布机构、政策领域、政策组合、政策技术工具方面还存在较大的不足需要完善。

关键词: 政策量化评价, 文本挖掘, PMC指数模型, 智慧能源政策, 碳中和

Abstract:

Objective and scientific evaluation methods can ensure reasonable and accurate policy evaluation results and directly and effectively promote policy formulation, implementation, and feedback adjustment. Different from the previous composite evaluation methods, the PMC index model avoids subjectivity and improves accuracy to a great extent. It is a relatively objective quantitative evaluation method in the world that is only used to analyze policy texts. However, at present, the setting of the PMC model index system is relatively fixed. The number of indicators is small, generally at most 10 primary indicators. It is not possible to conduct a comprehensive quantitative evaluation research on the content of this policy paper. Therefore, this project carries out in-depth text mining on the smart energy industrial policy sample set through the tools of ROST CM6 and VOSviewer. According to the mined high-frequency words, network and small group results, the PMC model is optimized, with 17 primary variables and 115 secondary variables, and a 4×4 symmetrical surface diagram of the PMC matrix. The results show that 8 of the 17 policies are good policies and the remaining 9 are acceptable policies. Among them, the guidance on energy work 2021 issued by the National Energy Administration in 2021 is the most comprehensive and scientific. Among the 17 primary variables and indicators, the sample has advantages in policy nature, policy evaluation, research basis, policy openness and key policy contents; There are still some deficiencies in policy scope, incentive guarantee, policy object, policy function, energy service, energy terminal application and energy types; There are still great deficiencies in policy timeliness, policy issuing institutions, policy fields, policy combinations and policy technical tools, which need to be improved.

Key words: