世界科技研究与发展 ›› 2024, Vol. 46 ›› Issue (6): 729-757.doi: 10.16507/j.issn.1006-6055.2024.11.002 cstr: 32308.14.1006-6055.2024.11.002

• 光子芯片 • 上一篇    下一篇

光子芯片的智能化前景:类脑智能算法的光学实现与潜在突破

谢斌1,2,3 谢红1,2   

  1. 1.上海理工大学智能科技学院;2.上海理工大学光子芯片研究院;3.上海理工大学健康科学与工程学院
  • 出版日期:2025-01-03 发布日期:2025-01-03
  • 基金资助:
    国家自然科学基金“视皮层发育关键期可塑性的突触环路调控机制”(32130043),上海市教委“上海市类脑光子芯片前沿科学研究基地”(NO.2)

The Future of Intelligent Photonic Chips: Optical Implementation of Brain-Inspired Algorithms and Potential Breakthroughs

XIE Bin1,2,3 XIE Hong1,2   

  1. 1. School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology; 2. Institute of Photonic Chips, University of Shanghai for Science and Technology; 3. School of Health Science and Engineering, University of Shanghai for Science and Technology
  • Online:2025-01-03 Published:2025-01-03

摘要: 当前,以人工神经网络为代表的类脑智能模型主要在软件层面实现。尽管这些模型在智能化方面已经取得了重大突破,但其发展仍然受到电子芯片物理限制的制约。随着光计算技术的发展,基于模拟光计算的光子芯片能够在硬件层面上直接构建具有神经形态的物理计算单元,实现高效智能处理与自适应学习。本文首先概览了数字光计算和光量子计算领域中光子芯片的相关研究进展,指出发展基于模拟光计算的类脑光子芯片能够规避逻辑门设计的问题并模拟生物脑在计算方面的优势。通过梳理人工神经网络的演化以及相应光学实现技术,本文针对现有类脑光子芯片在非线性元件和规模扩展方面的瓶颈,进一步提出了以下观点:在硬件实现层面,需要进一步探索非线性光学元件,构建全光非线性操作层来模拟脑的非线性特性;在算法实现层面,需要重点研究大脑以记忆为基础的学习认知原理,并设计匹配光子特性的类脑智能算法,从而突破规模限制。

关键词: 光子芯片, 光学神经网络, 光子突触, 类脑光子芯片, 类脑智能算法

Abstract: Currently, brain-inspired models, represented by artificial neural networks, are primarily implemented at the software level. Although these models have achieved significant breakthroughs in terms of intelligence, their development is still constrained by the physical limitations of electronic chips. With the advancement of optical computing technology, photonic chips based on analog optical computing can directly construct physical neuromorphic computing units at the hardware level, enabling efficient intelligent processing and adaptive learning. This paper first provides an overview of recent research progress on photonic chips in the fields of digital optical computing and optical quantum computing, highlighting that developing brain-inspired photonic chips based on analog optical computing can circumvent the issue associated with logic gate design and simulate the computational advantages of the brain. By reviewing the evolution of artificial neural networks and the corresponding optical implementation technologies, this paper further presents the following viewpoints regarding the bottlenecks in existing brain-inspired photonic chips, specifically in nonlinear components and scalability. In terms of hardware implementation, it is necessary to further explore nonlinear optical components and construct all-optical nonlinear operation layers to simulate the nonlinear characteristics of the brain. In terms of algorithm implementation, it is crucial to study the memory-based learning and cognitive principles of the brain to design brain-inspired intelligent algorithms that match photonic characteristics, thereby overcoming scalability limitations.

Key words: Photonic Chip, Optical Neural Network, Photonic Synapse, Brain-Inspired Photonic Chip, Brain-Inspired Algorithm