世界科技研究与发展 ›› 2024, Vol. 46 ›› Issue (6): 758-771.doi: 10.16507/j.issn.1006-6055.2024.10.007 cstr: 32308.14.1006-6055.2024.10.007

• 光子芯片 • 上一篇    下一篇

面向硅光集成的量子点激光器及波导耦合研究进展

刘万霖1,2 吕尊仁1,2 汪帅1,2 柴宏宇1,2 杨晓光1,2 杨涛1,2   

  1. 1.中国科学院半导体研究所固态光电信息技术实验室;2.中国科学院大学材料科学与光电技术学院
  • 出版日期:2025-01-03 发布日期:2025-01-03
  • 基金资助:
    国家自然科学基金重点项目“CMOS兼容的硅基直接外延多波长量子点DFB激光器阵列”(62334007)

Research on Quantum Dot Lasers and Waveguide Coupling for Silicon Photonics Integrated Circles

LIU Wanlin1,2 LV Zunren1,2 WANG Shuai1,2 CHAI Hongyu1,2 YANG Xiaoguang1, 2 YANG Tao1,2   

  1. 1. Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
  • Online:2025-01-03 Published:2025-01-03

摘要: 硅光集成结合了光电子高速率、低串扰和微电子高集成、低成本的优势,是突破当前微电子芯片性能墙、功耗墙等瓶颈,实现信息高速传输与处理的重要路径。经过二十余年的快速发展,硅光芯片用光波导、光调制器、光探测器、分波/合波器等元器件及其小规模集成已经基本成熟,但高性能的硅基光源尚未完全解决。由于本征硅的发光效率极低,如何将III-V族激光器集成到硅光芯片上并实现其与片上波导的低损耦合,是目前亟待解决的核心问题。量子点材料具有对载流子三维方向的强限制,使得量子点激光器呈现出低功耗、高工作温度、高温度稳定、强抗反馈等优异特性,被视为未来硅基光源的主流。本文面向大规模、高密度的硅光集成,重点介绍片上键合和异质集成两类量子点激光器方案,及光子引线、端面耦合和倏逝波耦合三种波导耦合方案,以期为尽早完成高性能激光光源这一硅光集成中的“最后一块拼图”提供启发。

关键词: 硅光集成, 激光器, 量子点, 波导耦合

Abstract: Silicon photonics integration combines the advantages of high optoelectronic rate, low crosstalk, high integration of microelectronics and low cost, which is an important path to break through the bottlenecks of current microelectronic chip performance wall and power consumption wall and realize high-speed information transmission and processing. After more than 20 years of rapid development, optical waveguides, optical modulators, optical detectors, wavesplitter/combiners and other components for silicon photonic chips and their small-scale integration have been basically matured, but high-performance silicon-based light sources have not yet been completely solved. Due to the extremely low luminous efficiency of intrinsic silicon, how to integrate III-V lasers into silicon photonic chips and realize their low-loss coupling with on-chip waveguides is the core problem that needs to be solved urgently. Quantum dot materials have a strong restriction on the three-dimensional direction of the carriers, which makes quantum dot lasers exhibit excellent characteristics such as low power consumption, high operating temperature, high temperature stability, and strong anti-feedback, and are regarded as the mainstream of silicon-based light sources in the future. In this paper, we focus on two types of quantum dot laser schemes, on-chip bonding and heterogeneous integration, as well as three waveguide coupling schemes, photonic lead, end-plane coupling and evanescent wave coupling, for large-scale and high-density silicon photonics integration, in order to provide inspiration for the early completion of the "last piece of the puzzle" in silicon photonics integration of high-performance laser light sources.

Key words: Silicon Photonics Circle, Laser, Quantum Dots, Waveguide Coupling